Régression sur composantes principales

En statistiques, la régression sur composantes principales est une analyse en régression sur les composantes d'une analyse en composantes principales. On utilise souvent cette technique lorsque les variables explicatives sont proches d'être colinéaires, lorsque par exemple le nombre de variables est très supérieur au nombre d'individus. La régression sur composantes principales est souvent comparée à la régression PLS[i 1].

Principe

La méthode se déroule en trois phases :

Notes et références

Notes

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Principal component regression » (voir la liste des auteurs).


Références

Ouvrages spécialisés


Articles publiés sur internet

  1. (en) [PDF] The MathWorks, Inc., « « Partial Least Squares Regression and Principal Components Regression » » (consulté le )

Voir aussi

Bibliographie

  • (fr) Michel Tenenhaus, La régression PLS : Théorie et Pratique, Paris, éditions Technip, , 254 p. (ISBN 978-2-7108-0735-3, lire en ligne)

Articles connexes

Liens internes

Liens externes


  • Portail des probabilités et de la statistique
  • Portail de l’informatique