En probabilité et en statistiques, la méthode delta (ou delta méthode) est une méthode pour obtenir une approximation de la distribution asymptotique de la transformée d'une variable aléatoire asymptotiquement normale. Plus généralement, on peut considérer la méthode delta comme une extension du théorème central limite.
Cas univarié
Soit une suite de variables aléatoires . Si pour deux constantes finies et et où dénote la convergence en loi, alors, la méthode delta donne, pour toute fonction dérivable et telle que :
Soit une suite de variables aléatoires d'espérance et de variance . D'après le théorème central-limite, on sait que . Maintenant, si l'on définit , on peut obtenir la distribution asymptotique de grâce à la méthode delta. Dans ce cas, on a la fonction . On sait que cette fonction vérifie . En appliquant la méthode delta, on obtient [1].