En calculant l'expression précédente lorsque n = 1 et i = 0, on obtient
On obtient de la même manière . On a ainsi retrouvé les coefficients de quadrature de la méthode des trapèzes.
Premières formules de Newton-Cotes
Soit un intervalle [a, b] séparé en n intervalles de longueur Δ = (b – a)/n. On note fi = f(a + i Δ) et ξ un élément indéterminé de ]a, b[. Les formules relatives aux premiers degrés sont résumées dans le tableau suivant :
L'ordre d'une formule de quadrature est définie comme le plus grand entier m pour lequel la valeur calculée par la formule vaut exactement l'intégrale recherchée pour tout polynôme de degré inférieur ou égal à m.
L'ordre de la formule de Newton-Cotes de degré n est supérieur ou égal à n, car on a alors L=f pour tout f polynôme de degré inférieur ou égal à n.
On peut en fait montrer le résultat suivant[2],[3]:
Si n est impair, alors la méthode de Newton-Cotes de degré n est d'ordre n.
Si n est pair, alors la méthode de Newton-Cotes de degré n est d'ordre n+1.
L'ordre donne une indication de l'efficacité d'une formule de quadrature. Les formules de Newton-Cotes sont donc généralement utilisées pour des degrés pairs.
Convergence
Bien qu'une formule de Newton-Cotes puisse être établie pour n'importe quel degré, l'utilisation de degrés supérieurs peut causer des erreurs d'arrondi[2], et la convergence n’est pas assurée lorsque le degré augmente à cause du phénomène de Runge. Pour cette raison, il est généralement préférable de se restreindre aux premiers degrés, et d'utiliser des formules composites pour améliorer la précision de la formule de quadrature. Toutefois, la méthode de Newton-Cotes d'ordre 8 est employée dans le livre Computer Methods for Mathematical Computations, de Forsythe, Malcolm et Moler, qui a joui d'un succès certain dans les années 70 et 80. Elle y apparaît sous la forme d'une méthode adaptative : QUANC8[4].
↑(en) P. J. Daniell, « Remainders in Interpolation and Quadrature Formulae », The Mathematical Gazette, vol. 24, no 261, , p. 238–244 (DOI10.2307/3605448)