Erland Samuel Bring

Erland Samuel Bring
Erland Samuel Bring
Fonction
Recteur
Université de Lund
Andreas Barfoth (d)
Johan Jacob Hellman (d)
Biographie
Naissance

Ausås parish (d)
Décès
(à 61 ans)
Lund
Sépulture
Cimetière de Lund (d)
Nationalité
Suédois
Formation
Université de Lund ( - )
Activités
Famille
Família Bring (d)
Père
Jöns Bring (d)
Fratrie
Olof Bring (d)
Parentèle
Ebbe Bring (d) (grand-père paternel)
Sven Lagerbring (oncle)
Autres informations
A travaillé pour
Université de Lund (-)
Œuvres principales
Radical de Bring, Bring's curve (d), Bring-Jerrard quintic form (d)

Erland Samuel Bring () est un mathématicien suédois.

Bring a étudié le droit de 1750 à 1757 à l'Université de Lund. Ensuite il a entrepris des études d'histoire, tout en s'intéressant aux mathématiques. En 1790 il est devenu Recteur de l'Université.

Son ouvrage le plus fameux Meletemata quaedam mathematica circa transformationem aequationum algebraicarum (1786) a été publié à Lund. Ce travail contient la contribution de Bring à la solution algébrique des équations du 5e degré.

Il a découvert une manière de transformer une équation de la forme :

(forme principale de l'équation du cinquième degré)

en une équation de la forme :

(forme de Bring-Jerrard de l'équation du cinquième degré)

par l'intermédiaire d'une transformation (méthode de Tschirnhaus) :

.

Il faut éliminer entre (1) et (2). Les paramètres α, β, γ et δ sont obtenus en résolvant des équations quadratiques et des équations cubiques[1].

George Jerrard a généralisé le travail de Bring, en prouvant de manière indépendante que toute équation de degré n peut être réduite, au moyen de transformations qui dépendent seulement de la résolution d'équations du second et du troisième degrés, en équations dans lesquelles les termes de degré n-1, n-2 et n-3 ont des coefficients nuls[1].

La forme normale de Bring-Jerrard est utilisée pour déterminer si une équation quintique est résoluble par radicaux ; voir radical de Bring.

Liens externes

Références

  1. Victor S. Adamchik et David J. Jeffrey, Polynomial Transformations of Tschirnhaus, Bring and Jerrard, ACM SIGSAM Bulletin, Vol 37, No. 3, September 2003 [1]
  • Portail des mathématiques
  • Portail de la Suède