Deltaèdre

Un deltaèdre est un polyèdre dont toutes les faces sont des triangles équilatéraux. Le nom est issu de la lettre majuscule du grec delta (Δ), qui a la forme d'un triangle. Il existe une infinité de deltaèdres, mais de ceux-ci, seuls huit sont convexes, ayant quatre, six, huit, dix, douze, quatorze, seize et vingt faces. Le nombre de faces, arêtes et sommets est listé ci-dessous pour chacun des huit deltaèdres convexes.

Les deltaèdre ne doivent pas être confondus avec les deltoèdres (épelé avec un "o"), les polyèdres dont les faces sont des cerfs-volants.

Les huit deltaèdres convexes

Nom Image Faces Arêtes Sommets Configurations de sommet
Tétraèdre régulier 4 6 4 4 × 3³
Diamant triangulaire 6 9 5 2 × 3³
3 × 34
Octaèdre régulier 8 12 6 6 × 34
Diamant pentagonal 10 15 7 5 × 34
2 × 35
Disphénoïde adouci 12 18 8 4 × 34
4 × 35
Prisme triangulaire triaugmenté 14 21 9 3 × 34
6 × 35
Diamant carré gyroallongé 16 24 10 2 × 34
8 × 35
Icosaèdre régulier 20 30 12 12 × 35

Seuls trois deltaèdres sont des solides de Platon (polyèdres dans lesquels le nombre de faces se rencontrant à chaque sommet est constant) :

  • le deltaèdre à 4 faces (ou tétraèdre), dans lequel trois faces se rencontrent à chaque sommet
  • le deltaèdre à 8 faces (ou octaèdre), dans lequel quatre faces se rencontrent à chaque sommet
  • le deltaèdre à 20 faces (ou icosaèdre), dans lequel cinq faces se rencontrent à chaque sommet

Dans le deltaèdre à 6 faces, certains sommets sont de degré 3 et certains de degré 4. Dans les deltaèdres à 10, 12, 14 et 16 faces, certains sommets sont de degrés 4 et certains de degré 5. Ces cinq deltaèdres irréguliers font partie de la classe des solides de Johnson : les polyèdres convexes dont les faces sont des polygones réguliers.

Les deltaèdres maintiennent leur forme, même si les arêtes sont libres de tourner autour de leurs sommets, c’est-à-dire que les angles entre les arêtes sont fluides. Les polyèdres n'ont pas tous cette propriété : par exemple, si vous relâchez certains angles du cube, le cube peut être déformé en un prisme carré non droit.

Formes non-convexes

Il existe un nombre infini de formes non-convexes.

Quelques exemples de deltaèdres non-convexes :

D'autres peuvent être engendrés en ajoutant des pyramides équilatérales aux faces de ces cinq polyèdres réguliers :

  1. triakitétraèdre équilatéral
  2. tétrakihexaèdre équilatéral
  3. triakioctaèdre équilatéral (octangle étoilé)
  4. pentakidodécaèdre équilatéral
  5. triaki-icosaèdre équilatéral

De plus, en ajoutant des pyramides inversées aux faces :


Grand icosaèdre
(20 triangles se coupant)

Octangle étoilé
(24 triangles)

Troisième stellation de l'icosaèdre
(60 triangles)

Liens externes

Références

  • H. Martyn Cundy Deltahedra. Math. Gaz. 36, 263-266, Dec 1952. [1]
  • H. Martyn Cundy and A. Rollett Deltahedra. §3.11 in Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 142-144, 1989.
  • Charles W. Trigg An Infinite Class of Deltahedra, Mathematics Magazine, Vol. 51, No. 1 (Jan., 1978), pp. 55-57 [2]
  • Martin Gardner Fractal Music, Hypercards, and More: Mathematical Recreations, Scientific American Magazine. New York: W. H. Freeman, pp. 40, 53, and 58-60, 1992.
  • A. Pugh Polyhedra: A Visual Approach. Berkeley, CA: University of California Press, pp. 35-36, 1976.
  • Portail de la géométrie